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(bottom right) Z. Fan and F. Liou, Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy, 2012.
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Additive Manufacturing: Graded Alloys
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Crack related to refractory carbide formation



Ti-6Al-4V to Invar 36

5

Ti-6Al-4V

Fe-36Ni

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

W
ei

gh
t 

P
er

ce
n

t

Layer Number

Ti Al V Fe Ni Ti Al V Fe Ni

Q: What is the cause of distortion 
and cracking in the gradient?

Fe Ni

VAl

Ti



6

Liquidus and Solidus: Pure Ti to Fe-36Ni

600 degree drop!

Where’s Al and V? More on that in a minute…

Distortion likely caused by formation 
of liquid in the gradient

T=1100 K
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Thermodynamic Analysis: Limitations
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TCFE8 
(Commercial 
Database)

De Keyzer
et al., 2009

TCFE8 neglects FeTi
B2 and overstates 

C14 solubility.
These are relevant 

to our analysis!

B2 ordering may* exist in Mo-Nb; 
not on current phase diagram

*C. Jiang et al., Phys. Rev. B., 2004.
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Conclusion So Far

We can rationalize success/failure of pre-existing samples like these with 
existing databases, if we are diligent.

For real design purposes, we need to improve the databases.



CALPHAD: CALculation of PHase Diagrams

9M. Hillert, 2nd ed., 2008, p. 149
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Phase-based modeling of material properties –
equilibrium and non-equilibrium

L. Kaufman and H Bernstein. Computer Calculation of Phase Diagrams. 
(Academic Press Inc., 1970).

Phase Fraction Balance

Sublattice Site Fraction Balance

Mass Balance



CALPHAD: Example energy function
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“L” and “I” parameters are fit to experimental and first-principles data.
They are the “secret sauce” of a database and play a significant role in 

prediction accuracy.



ESPEI:  Extensible, Self-optimizing Phase 
Equilibrium Infrastructure

Shang, Wang, Liu, Magnesium Technology 2010, p. 617

GUI
Databases

Database 
Automation

Input Data

Model Data

• Crystallographic: 
atomic positions

• Thermochemical: 
heat capacity, 
enthalpy, free 
energy

• Phase equilibrium: 
phase boundary

• Gibbs energy 
models linked to 
input data used in 
evaluation of model 
parameters
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CALPHAD Data Challenges

• Data fragmentation

• Data standards

• Workflow tools

• Uncertainty 
quantification

• Reproducibility
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pycalphad

• Written in Python (open source)

• Supports multi-component 
alloys

• Designed for database 
development and prototyping
pycalphad.org
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pycalphad

• Written in Python

• Reads/writes Thermo-Calc TDBs

• Supports multi-component 
alloys

• Open source
pycalphad.org
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Uncertainty in CALPHAD Modeling

• Uncertainty Quantification (UQ)

• Uncertainty Propagation
– Data -> Parameters -> Properties (ΔH, ΔS, Tmelt, etc.)

• Outlier Detection

• Model Selection
– How many parameters for a phase? Which type?

– What does it mean for a model to be “better?”
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Scoring Candidate Models

• Which columns do we include?
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Scoring Candidate Models

• Which columns do we include?
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Akaike Information Criterion (AIC)
2k + n ln(RSS)

RSS = Residual Sum of Squares
k = # of parameters
n = # of data points



Parameter Optimization: Bayes’ Theorem
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P(Parameters | Data) ~ P(Data | Parameters) * P(Parameters)

Posterior distribution

Likelihood

Prior distribution



Frequentism vs. Bayesianism

• Frequentism: Parameters are “fixed”, data are 
random variables

• Bayesianism: Data are “fixed”, parameters are 
random variables
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Bayesianism and CALPHAD

• Great match because:
– Expert/prior knowledge is key and can be 

quantified and added directly

– We often know a rough acceptable range for 
parameter values

– Updating the model does not require all of the old 
data (choose old posterior as new prior)
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Markov Chain Monte Carlo (MCMC)

• Recall Bayes’ theorem: How do we address the 
proportionality constant?

• Answer: Metropolis sampling.
– We walk parameter space by randomly choosing a next 

step.
– Pi+1(Data | Parametersi+1) * Pi+1(Model) /

Pi(Data | Parametersi) * Pi(Model)
– When ratio > 1, always accept. When ratio < 1, sometimes 

accept.

21
“MCMC sampling for dummies,” http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/. 
Retrieved 10 November 2015.

http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/


Constructing a Likelihood Function

• Assume normally distributed errors

• For each dataset

– log L = <(ypred – ydata)2> / variance

– Let variance be a random variable

• Total log-likelihood is sum of all log L’s

• Dataset variance also acts as a weight
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Ideal Case: Binary Solution
• 10 synthetic datasets with Gaussian noise

– 5 enthalpy
– 5 entropy
– 1 “bad” dataset (systematic bias)
– Equal values for prior dataset variance

• Three parameters to fit
– Gex = (H – T*S + LT2)xaxb

• True values: H = 7000, S = 5, L = 0

23
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True values in blue
Dashed lines mark 95% credible intervals
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We found the 
outlier dataset!



Ideal Case: Uncertainty Propagation
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Real Case: Ni3Al Heat Capacity

• BMAGN(FCC, Ni)

• TC(FCC, Al, Ni; 0)

• TC(FCC, Al, Ni; 1)

• Priors at zero

• Fit to DFT data

• Compare to Dupin

27

Dupin’s values in blue



1. Get sample of parameter 
posteriors from MC simulation. 
This is called the trace.

2. Compute the property of interest 
(Cp in this case) with the trace.

3. Compute mean and standard 
deviation of the property.
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Model Selection

• Run MCMC separately on each candidate 
model, then calculate a model “score”
– Lots of methods: BPIC, AIC, BIC, DIC, …

• Use categorical variables and compare 
multiple models in one MCMC simulation
– P(Model 1), P(Model 2), etc.

– Computationally intensive
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Automating Al-Ni
Automated DFT Phase Diagram Dupin’s Assessment (2001)

30Next Step: Refine parameters with phase boundary data
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Future of CALPHAD

• We don’t have one “best” model; we have an 
ensemble of models based on joint probability 
of parameter distributions

• Parameter distributions are updated over time 
with new evidence (data and/or beliefs)

• The “best” or most probable models can be 
automatically determined using MCMC
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Thank You

richard.otis@jpl.nasa.gov

www.github.com/richardotis
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Automation Challenges

• Getting Structured Data

– Tends to be jealously guarded

– Solution is tedious but tractable

• Sublattice Model Determination

– For now, humans must perform this step

43
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30% Invar
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1273 K



Previous Work in Bayesian Methods

• ChemSage (1995) was first to incorporate 
Bayesian methods into CALPHAD modeling
– Update priors by iterative procedure using 

covariance matrix

• Stan and Reardon (Calphad, 2003) discussed 
implementing Bayesian statistics using a 
genetic algorithm (no public implementation)
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